
_J

w_ ! hou_m_mmoMe,mck_n0met_n*_ m_mtngtmlmctiom.**mchl_evktm0(kenNm_. imbed0_
nolinlommton.Sen4cbmmmsmgwmngm__ _lm w anyomitmp_ nlmbooaec_d k_om_
_nmSendcm,Okec-I_q_eI_ Inlo_mmllonO(_mm w_ P,e_mls.12t$Je#lml__ i.l_hwlq.8+_le$204,Alllng_n,

AD-A219 678
2. REPORTDATE i 3. REPORTTYPE AND DATES COVERED

February 22, 1990 I Special Technical• l

4. TITLEArid SUSTITLE S. FUNOINGNUMBERS

ISIS and META Projects: Progress Report ARPA order 6037

N00140-87-C-8904

6. AUTHOR(S)

Kenneth Birman, Robert Cooper, Kelth Marzullo

S i| i7. PERFORMINGORGANIZATIONNAME() ANDADORESSIES) 8. PERFORMINGORGANIZATION
REPORT NUMBER

DARPA/ISTO 90-1103

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADORES. 'ES) 10. SPONSORING/MON_ORING
AGENCY REPORTNUMBER

m-- i n inn I

11. SUPPLEMENTARYNOTES

APPROVED FOR PUBLIC RELEASE,

,DISTRIBUTION UNLIMITED l

121. OlSTRIBUTIONIAVAILABIUTYSTATEMENT 12b. DISTRIBUTIONCODE

i ill , i ,i r _ I

13. ABSTRACT (Mwximum200 wordl)
i

DTIC

S ELECTE D

MAR2 6 1990

D
14. SUBJECT TERMS IS. NUMBEROFPAGES

13

,,..scuR,.C..,F=AT,O. SBCUR,.=.,FICATIO.
OF REPORT I O_F._IS PA_QE__ ! OFABSTRACT ASBTRACT I

UNCLASSIFIED UNCLASSIFIED
NIN ?_40.OS .81_1_0 IIIlitllllll @_ IN (1_. t.ll_

P_ W ANII Btll. Z_-il

mtu

i

1990015417

Isis and META Projects: Progress Report

Kenneth Birman, Robert Cooper, and Keith Marzullo*

February 22, 1990

_x

_'klsls and MSTA are two distributed systems projects at Cornell Univer-

sity. The Isis project, led by Ken Birman, has developed a new methodology,
virtual synchony, for writing robust distributed software. This approach
is directly supported by the Isis Toolkit, a programming system that is
distributed to over 300 academic and industrial sites. As the basic Isis

techniques ha.re matured, we have focused increasingly on some of the re-

malning "hard problems" of reliable distributed programming. Principally
these include high performance multicast, large scale applications, and wide
area networks. We are also developing several interesting applications that

exploit the strengths of Isis, including an NFS-compatible replicated file

system.
The Mr.T^ project, led by Keith Marzullo, is about distributed control

in a soft real-time environment incorporating feedback. This domain en-

compasses examples as diverse as monitoring inventory and consumption on
a factory floor, and performing load-balancing on a distributed computing
system. One of the first uses of MgTA is for distributed application manage-
ment: tile tasks of configuring a distributed program, dynamically adapting

to failures, and monitoring its performance. _-_bz._3')-'_--
This article reports our recent progress and current plans. But first we

begin by explaining our approach to distributed computing, a philosophy
that we believe significantly distinguishes our work from that of others in
the field.

"This material is adapted from a short paper presented at the Workshop on Mission ¢_,
Critical Operating Systems, W_hington, Nov. 1989. This work was supported by the ----] _
Defense Advanced Research Projects Agency (DoD) under ARPA order 6037, Contract A&I
N00140-87-C-8904 and under DAllPA/NASA _ubcontract NAG2-503 administered by '_ C]

the NASA Ames Research Center. The views, opinions, and findings contained in this =ed 17
report are those of the authors and should not be construed as an official Department of ,)n
Defense position, policy, or decision.

UlSUIbuUon I
1

--"_ Avad,_,bil,rY _odes
I_ls! _tall .',d Ior_, Special

1990015417-002

Network transparency: Too much of a good thing?

Users of contemporary distributed computing systems rapidly discover how
similar such systems are to the timeshared machines of the 1970's: the

pervasive use of "network transparency" techniques lets us largely ignore
the fact of distribution. Normally, this is a desirable property. For example,
the dominant distributed programming technology, remote procedure calls
(RPC), permits a program running on one machine to invoke a procedure
residing in some other program. Given adequate language support, an RPC
interface can hide many details of message-based interaction and connection
ma_lagement from the user. The idea of transparency also extends to other
parts of a typical distributed system. Using a file system like NFS, a program
can operate on files that physically reside on a remote machine in the network
using the same interface as for local fries.

Complete transparency is troubling, however when one considers the
many reasons that distributed computing should be different from non-
distributed programming. ParaUel computing is in many ways analogous to
distributed computing. Yet, whereas tile effective use of parallel machines
has triggered a search for flmdamentally new programming languages and
methodologies, this has not happened for distributed programs. If we are
building distributed systems using technologies that proved unsatisfactory
in parallel settings, is it not likely that our distributed systems are making
ineffective use of parallelism?

The requirements placed on a distributed application often go beyond
the exploitation of concurrency. In particular, one often wishes to monitor
and control a distributed computer system while it is running. Moreover,
a distributed system may need to remain operational in the presense of
partial failures. By this we mean situations where one of the machines
connected to a network fails or becomes partitioned from the others, while
the majority of the machines remain operational and must reconfigure and
continue executing. The complementary problem also arises, of reintegrating
a recovered machine into an online system.

The Isis project is based on the premise that when we pretend that a
distributed system is really a timeshared system, or encourage the user to
program as if his or her application were the only process running on the
system, as wit;., transactional ItPC, we discard a powerful resource: the
fact of distribution itself. We lose the ability to employ a set of processes
in a coordinated, cooperative attack on a problem. We lose the ability to
apply highly adaptive, reconfigurable solutions to applications that must

1990015417-003

remainonlinein thepresenseoffailuresand recoveries.And, we make it
difficulttobuilda distributedsystemthatismore fault-tolerantand offers
higherperformancethananyofitscomponents.The IslsToolkit,and the
Meta systemthatwe arenow buildingon topoftheToolkitenvironment,

representa significantsteptowardsaddressingthesesortsofissues.

The ISlS Toolkit: Process groups and multicasz

At thelowestlevel,theIslssystemprovidesa toolkitof distributedpro-
gramming techniques.Thisconsistsof a layerof softwareto assistthe
pr,,,_rammerinbuildingdistributedapplications.The toolkitisverymuch
likean extensionof theoperatingsystem,althoughimplementedwithout

changestotheoperatingsystemson whichIslsruns.
Centralto Islsisthenotionof a processgroup. These groupsarea

lightweightprogrammingconstruct:a singleprocesscanbelongtoarbitrar-
ilymany groups,and thereisminimaloverheadin beinga member ofa

group.A processcan dynamicallyjoinand leavegroups,and groupscan
spanmultiplemachines.Groupshavea hierarchicalnamespace,much likea
filesystemnamespace,and permitflexible,location-transparentaddressing.

Islsprovidesmulticastandunicast(point-to-point)communicationprim-
itivesthatareeasy-to-useand flexibletothedemands oftheprogrammer.
A multicastcan be directedto allmembers ofa group,and zeroor more

willrespond,dependingon theneedsoftheparticularapplication.
Concurrentmulticastsandunicasts,dynamicgroupchangesand failures

would seem topresenta verycomplex,evendaunting,executionenviron-
ment. But inIslsaU theseconcurrenteventsappeartohappen one-at-a-

time.We callthissimplifyingmodel virtualsynchron_.

Virtual synchrony

Virtualsynchronyisa generalapproachtosolvingdistributedcomputing
problems.Derivedin partfrom thestatemachineapproach(introduced
by Lamport and Schneider),virtualsynchronypermitstheprogrammerto

designa distributedprogramforexecutionina simplifiedenvironment,in
whichallprocessesappeartoobserveeventssimultaneouslyand thereforein
thesameorder.Eventssuchasmulticastand detectionoffailuresareatomic

ina virtuallysynchronoussetting:allgroupmembers receivea messageor
observea failureifany does,and in the same consistentordering.The

synchronousabstractionisrelaxedwhen theprogramisexecutedby Isls

3

1990015417-004

using application-specific knowledge. Isis has several multicast primitives
that differ in the kind of ordering they enforce on concurrent events. By
selecting the appropriate primitive, the programmer tells Isls what degree
of synchrony is needed for that part of their application.

Virtual synchrony permits the Isls programmer to work in an environ-
ment where many of the aspects that render distributed computing diffi-
cult do not arise, but the resulting program runs as asynchronously (and
fault-tolerantly) as may be desired, without compromising correctness. Vir-
tual synchrony has been exploited throughout Isis, and leads to a simple
step-by-step programming style that even relatively unskilled programmers
can follow. Taken together with the wide range of tools represented in the
toolkit, the approach leads to a major jump in programmer productivity,
and major improvements in the robustness of distributed software.

Virtual synchrony has a well-developed theory, principally through the
work of Ph.D. graduate Frank Schmuck, that explains when low-cost asyn-
chronous techniques can be used to implement virtual synchrony. More
recently, we have explered the relationship between global correctness and
consistency properties in distributed systems and the ordering mechanisms
needed to achieve them; a technical report on this subject is listed below.

ISIS Toolkit: Problem-specific tools

Using the process group, multicast and unicast primitives, Isis provides a
variety of higher level tools that solve common subproblems in distributed
computing. For example, tools are provided to:

• Manage replicated data in memory or on a disk file

• Split a computation among several machines to exploit parallelism

• Coordinate an external action such as operating independent welding
units that are jointly welding an automobile body

• Synchronize concurrent actions such as when several processes share
a resource that only one can use at a time

• Monitor the status of a computation, process or computer, triggering
user-programmed actions should it fail

• Dynamically reconfigure to adapt after a failure or to integrate a re-
covered machine into an operational system, restarting services that

1990015417-005

should run at that location and bringing them up-to-date concerning
the _ctive state of tile system.

This is just a partial list. Moreover, the tools are integrated with each other
in a way that makes it easy to obtain consistent behavior even when several

processes must react independently to the same event.

Isis Version 1.3.1

The present version of tile Isis toolkit can be used from C, C++, and FOR-
TITAN.COMMONLiSP interfaces are available for several versious of this lan-

guage. Isis runs on (and between) Sun, DEC, HP, Gould, NeXT and Apollo
equipment, on and between several versions of UNIx (including MACH, AIX,
HP-UX and UNIcos). Ports to DEC's VMS system and IBM's VM operat-
ing system are being considered, as is an interface to PCs running OS/2.

The Isis Toolkit is in increasingly wide use, and our group has distributed
more than 300 copies of the source for Isis V1.3.1. Among the users of the
current system are a number of Fortune 500 companies, s_veral industrial
research and prototyping groups, and a number of academic researchers and
instructors. Applications include controlling a world-wide nuclear testban
and seismic monitoring system, automating a factory-floor VLSI fabrication
system, dissemination of quotes and other real-time data in brokerage set-
tings, and CAE/CAM systems. This diverse user base has been a source of
invaluable feedback.

Isis Version 2.0

Although Isis V1.3.1 has proved extremely robust, it is also sluggish and
hard to scale. Isis V2.0 will soon be released, and overcomes these limita-
tions whih preserving tile robustness of V1.3.1. With regard to performance,
V2.0 includes a new "bypass" communication protocol suite, which permits
group communication at hardware speeds and enables the application de-
signer to introduce new multicast transport algorithms that exploit special

hardware or software features, or offer special properties such as real.time
delivery guarantees. This facility represents a major advance for our group,
and yields multicasts that are a match for alternative approaches that lack
Isis's atomicity and ordering guarantees. We feel that it overcomes the
widespread concern that fault-tolerance may simply be too costly a price

1990015417-006

to pay in "real" distributed systems. On the contrary, we now feel that
developers who build on a conventional software substrate are limiting their
options, working with unnecessarily complex message-at-a-time interfaces,
and not _:vengaining a performance advantage by doing so.

With ,'egard to scale, Isis V2.0 has two significant extensions that re-
spond to tile most urgent needs identified by our users. One permits us to
connect appJieations on cumputers that don't run Isis to the Isis system
as remote ch,:nts. The interface is largely transparent to the application
designer and imposes little overhead. In the initial implementation of re-
mote clients, the remote Isls server may introduce a common failure point
for those computers that are its remote clients. We plan to increase the
fault-tolerance of _.his mechanism by permitting a remote client to switch
dynamically between Isis servers in case of failure. Nevertheless, the current
implementation is a good match for diskless workstations where a client's
remote disk server machine will also act as its Isis server process.

A second extension permits users to develop services that span wide-
area networks, residing t,n multiple Isls local networks and communicating

infrequently and asynchronously. For example, the large.scale seismology
system cited earlier uses this facility to keep track of the location of files
containing signal analysis output and to transfer these files from one Isis
system to another. The long.distance circuits are set up periodicafly, used
intensively, and then closed dc,wn to minimize communications costs.

ISIS applications

In order to exercise and evaluate Isis, we have developed several fault-
tolerant applications. For example, '_,ehavebuilt a distributed, fault-tolerant
version of the UNIX program make, a main-memory distributed relational

database, and a multi-user spreadsh_mt that can be used in a cooperative
manner. The first two of these applications are available as part of the Isis
V2.0 release, and the spreadsheet should be available by the end of 1990.

As part of his research, graduate student Alex Siegel has been designing
and building a highly-available file system called Deceit. This file system is
completely compatible with NF$, yet uses replication for improved response
time, hi&iter availability and better scaling. Additionally, Deceit allows the
clients to specify properties of individuaJ files in order to tune access to the
file. Currently, Deceit is rtmning in a prototype form. It outperforms NFS
for many operations (notably read and write), and equals NFS for almost
all others operations.

1990015417-007

Using Isis for large scale applications

Many systems that support process groups assume that any single appli-
cation will use at most one group. Most Isis applications employ several
groups, and many use large hierarchically structured groups. This is ex-
plained by two factors. First, the trend toward mod_darity and object-
oriented programming in distributed systems leads many designers to think
of a process group as a form of distributed object. Even if the components
of tile group are coded in different languages or have differing functionality,
this proves to be a simplifying and powerful structuring methodolo&v. Since
a single process may make use of several services, each implemented using
such a process group, it is not uncommon for a single process to belong to
many groups.

A second factor is concerned with scale" Isis users are building sur-
prisingly large distributed applications, with groups which contain many
processes. It is un,lsual, and unwise, to multicast to the entire membership
of such a large group, except where widespread dissemination of information
is fundamental to the application itself. (This might be the case for a dis-
tributed network news application for example.) Designers of large systems
are thus lead to use a hierarchical structure in which a large group contains

a number of smaller groups. These smaller groups are chosen in such a way
that most multicasts are destined to just one or two such groups.

Responding to these needs, Robert Cooper has designed a suite of hier-
archical process group tools for Isls. These extend the basic tools to oper-
ate transparently on hierarchical groups, while augmenting the system with
mechanisms for reliably broadcasting to a large group that is maintained
hierarchically. A prototype of this facility is nearing completion.

High performance multicast

Looking to the future, we • exploring a number of theoretical and prac-
tical topics at the Toolkit level. The practical ones include adding a better
security mechanism to the system, extending Isis to support real-time pro-
tocols and other special.purpose protocols, and integrating the system into

environments with parallel processors and extremely high speed communica-
tions protocols. Mechanisms for exploiting new operating systems, such as
Chorus and M^cli, also represent an appealing direction. Graduate student
Patrick Stephenson has developed a class of extremely high performance

1990015417-008

multicast transport protocols suitable for use in the new Isls system, and
we plan to combine these in conjunction with an _SlS service knowledge-
able about the communication topology of a Ioc_l area network to develop
a suite of protocols that adapt themselves to the environment, for instance
exploiting Ethernet multicast when possible. We also hope to scale the size
of local area network on which Isl,_ may run from the current limit of _bout

64 nodes up to hundreds or thousands of nodes, by introducing hierarchy at
the lowest levels of the Toolkit. The Toolkit arc[,Jtecture now seems fairly
stable, and is unlikely to change in _,'_'_ibleways as these extensions are made.

The META system

We mentioned above that Isls involves software at several levels. The toolkit

is a low-level technology, for use by programmers who actually code dis-
tributed programs. The META system is a collection of higher level tools
that aid in gluing together distributed programs into a reliable and adaptive
distributed system.

At the core of META iS & set of routines that support building rel_.able
reactive system.q, such as factory floor management systems, process con-
trol systems, and the control aspects of distributed applications. This level
provides a platform that can be used to monitor and control a distributed
system. Supported at this level are routine_ for instrumenting a distributed
system, monitoring for (perhaps complex) real-time conditions, and trigger-
ing actions on the controlled system.

There are two interfaces to the sensor/actuator platform. The low-level
interface permits users to define _aw sensors and actuators, namely routines
(or variables) in user programs that can be queried to obtain the current sen-
sor value. At this level, META also supports an entity-relationship database
model describing sensors, their re_l-time properties, and the relationships
between them. Some raw sensors are predefined, such as the ones giving the
load on a computer or a process, while others can be defined dynamically,
such as the length of a job queue maintained by some software component
of a larger system. Also supported are mechanisms for composing multiple
raw sensors into an abstract sensor. This is used to define such properties
as the average over &set of sensors, as well as to SUl_portsensors tolerant of
certain classes of failures.

The high-level interface to META is concerned with querying and mon-
itoring sensors. This supports a Prolog-like query language for identifying
individu_l sensors and sets of sensors satisfying user-defined predicates, as

1990015417-009

well as a trigger ianguage whereby the user can monitor for events of inter-
eat, triggering appropriate actions when the event is detected. Both of these ,_

interfaces are provided at the language level. _"

Built on the basic platform are a number of facilities for actually manag-
ing distributed applications. These help manage the allocation of system re-
sources, control the initiation, migration, and termination of programs, and
monitor the performance of the system. One interface to this distributed
system manager is accessed through a powerful graphical interface: using
this facility, one can achieve sophisticated faldt-tolerant behavior without
writing a line of code.

Parts of METAare currently available, while other parts are still being
built. The IV[ETAplatform of sensors and actuators facilities, built by grad-
uate student Mark Wood, is provided in Isis V2.0, and the design of our
sensor query language is complete; an implementation is expected to be fin-
ished during 1990. Visitor Robbert Van Renesse has developed, on top of
MET/,, a distributed application management program called G^RP, which
is a prototype graphical monitoring and control program. This system will
also be released sometime in 1990.

Support for the software

Although Isis is an academic project, it has acquired an increasingly large
commercial following. At present, all of the academically developed Isis
software is freely available in the public domain. We have made a major
effort to provide high quality support for this software, and believe we have

an excellent record of responsiveness--and of success in tracking down and
fixing bugs. On th-. other hand, this sort of commercial responsiveness is
maki_lg it increasingly difficult to maintain an active research program.

To address this problem, we have formed a company, Isis Distributed
Systems Incorporated, which is offering commercial services to companies

in need of customized software or consulting. Starting in 1990, these will
include support for the Isis Toolkit and products that extend the Toolkit
to respond to some of the specialized demands of our user group. For ex-
ample, IDS is now building a col]ection of general purpose software tools for
one client whose application demands certain specialized components that
MI_T^currently lacks. In this particular case, the resulting software will
eventually enter the Isis public distributions. However, IDS is also engaged
in proprietary software development, and is intended to operate as an in-
creasingly autonomous commercial operation, freeing our research group to

1990015417-010

fOCUS on research.

Obtaining ISlS

To obtain information about Isis, or a copy of the current software distri-
bution, write to: The Isis Project, Department of Computer Science, 4105
Upson Hall, Corner University, NY 14853 (607-255-9198), or send elec-
tronic mail to isis@cs.cornell.edu. The group also maintains a mailing list
to which announcements of all new papers are sent.

References

[1]K. Bi,'man,R. Cooper,T.Joseph,K. Kane,and F.Schmuck.I$187'1.3
-- A Distributed Programming Environment User's Guide and Re/er.
ence Manual. Department of Computer Sdence, Cornell University,
June 1989.

This ma,'ual documents the system interface supported by ISIS V1.3.1
and is being extensively revised to cover ISIS V2.0. The revised manual
should be ;_vailable in late March, 1990.

[2] K. Birman, R. Cooper, K. Marzullo, and M. Wood. Tools for dis-
tributed application management.

Describes the basic architecture of the MP.TAsystem as used for dis-
tributed monitoring and control. In preparation, 1990.

[3] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed
systems. In Proceedings o.f the Proceedings o/ the Eleventh Symposium

on Operating System Principles, pages 123-138. ACM SlGOPS, 1987.

Discusses the idea of virtual synchrony and describes its application t_o
building the ISIS Toolkit.

[4] K. Birman and T. Joseph. Reliable communication in the presence of
failures. ACM Transactions on Computer Systems, 5(2):47-76, Febru.
_y 1987.

Discusses the multicast protocols on which ISiS VI.3.1 is based. These
lure sometimes used in ISIS V2.0, but have been superceeded by the
bypass protocol suite for the most common types of communication.

10

1990015417-011

[5]K. Birmanand T.Joseph.Chapters14a,t_i5.InS.Mullender,editor,
DistributedSystems,volume331ofLectureNoteson ComputerScience,
pages293-367.Spr_nger-Verlag,1989.

Thesetwochaptersdiscusstheideaofvirtualsynchronyinthecontext

ofa broad.basedreviewoftechniquesforbuildingdistributedsystems.

[6]K. Birman and K. Marzullo.The roleofordelindistributedsystems.
TechnicalReportTR 89-1001,DepartmentofComputerScience,Cot-
nellUniversity,March 1989.

Concernstherelationshipbetweenwhat areareintuitivelythoughtof
as "consistency"propertiesindistributedcomputing,and theroleof
orderingmechanismsin achie_,ingthem.An earlyversionisavailable

asa technicalreport,currentlybeingrevised.

[7]K. Birmanand R. Van Renesse.Robustnessindistributedsystems.

Examinesthe fundamentalrequirementsthatany fault-tolerantdis-
tributedsystem must fulfiU,and presentsuniversallyapplicable
paradigmsforachievingthem.Inpreparation,1990.

[8]K.Birman,A. Schiper,and P.Stephenson.Fastcausalmulticast.Tech-
nicalReport TR 90-???,Departmentof Computer Science,CorneU
University,March 1990.

Discussesa new suiteofmulticastprotocolsthat"bypass"thebasic
Islssystemsoastoachieveextremelyhighperformance.Submittedto
ACM TOCS, availableasa preprint.

[9]R. Cooperand K. Birman.Supportinglargescaleapplicationson net-
works of workstations. In Proceedings o 2nd Workshop on Workstation
Operating Systems, pages 25-28, Pacific Grove, CA, September 1989.
IEEE Computer Society Press, Washington D.C., Order No. 2003.

Describes the design of the hierarchical process group facility.

[10] R. Cooper and K. Birman. Issues of scale in the ISIS system.

Discusses the role of large process groups in Isls applications and the
hierarchical mechanisms that are being added to Isls in suppor'_ of such
groups. In preparation, 1990.

[11] T. Joseph and K. Birman. Low cost management of replicated data
in distributed systems. ACM Tmnsactiona on Computer $_/sterr.s,
6(2):54-70, May 1988.

11

1990015417-012

This is a somewhat outdated paper discussing the basic ISIS replication
technique but in a database transaction context. Our ultimate imple-
mentation of the method was much simplified when it was removed from
this context. However, we continue to believe that the method presented
in this paper dominates most data replication techniques known in the
database community.

[12] K. Kane and K. Birman. Log-based recovery in object-orlented dis-
tributed systems. Technical Report TR 88-949, Department of Com-
puter Science, Cornell Unive airy, November 1988.

Discusses the problem of recovery in object-oriented systems using asyn-
chronous logging. An extended vers,cn is also available, it was presented
to Cornell as the first author's doctoral dissertation. Submitted to ACM

TODS, available as a preprint.

[13] M. Makpa_gou and K. Birman. Designing application software in wide
area networking settings.

Discusses the development of distributed software for wide-area net-
works using a new long-haul spooling facility that the authors imple-
mented as part of Isis V2.O. In preparation, 1990.

[14] K. Marzullo. Implementing fault-tolerant sensors. Technical Report
TR 89-997, Cornell University, May 1989.

Presents a. method for building programs that can tolerate failures of
sensors. The MZT^ system uses the techniques described in this paper
in order to tolerate failures of continuous-val,:d sensors.

rl 5] K. Marzullo and P. Chew. Et_cient algorithms for masking sensor fail-
ures.

Generalizesthematerialpresentedin[14]toa widerclassofsensors.
Inpreparatior.,1990.

[16]K. Marzulloand F.Schmuck.Supplyinghighavailabilitywitha stan-
dardnetworkfilesystem.In Proceeding8o/the EighthInternational

Conference on Distributed Computing Systems, pages 447-455. IEEE
Computer Society, June 1988.

Describes an early version of a highly.available file system (RNFS) that
was built using Isls. Experience with this project led to the more am-
bituous file system project described in [20].

12

1990015417-013

[17] Keith Marzul]o and Mark Wood. Tools for reliable reactive systems.

Describes the fundamental problems of sampling sensors and triggering
actuators in faldt-tolerant distributed settings. Tlds material represents
the theory underlying the Mr.TA. system. In preparation, 1990.

[18] R. Van Renesse. The Garp management system.

Describes a graphical interface tool for building distributed application
management software. In preparation, 1990.

[19] F. Schmuck. The Use of E_cient Multicast Protocols in Asynchlvnous
Distributed Systems. PhD thesis, Cornel] University, Department of
Computer Science, August 1988.

Concerned with the theory of virtual synchrony. It develops a set of
results showing when asynchronous casually ordered mniticast protocols
can be used in implementing a distributed system.

[20] A. Siegel, K. Birman, and K. iVlarzul]o. Deceit: ,s, flexible distributed
file system. Technical Report TR 89-1042, Department of Computer
Science, Cornell University, November 1989.

Describes the design and prototype implementation of the Deceit file
system, which mimics an NFS interface but offers substantially ex-
tended functionality and fault-tolerance.

13

1990015417-014

